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Figure 2 Boride layer depths as a function of time for 
AISI 1008 steel samples heated at 960~ in the pack 
mixture. 
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The size of shear lips in polymers 

Shear lips have been observed on the fracture 
surfaces of a number of polymeric materials, in 

particular polycarbonate [1 -4 ] ,  vinyl-urethane 
resins [5], polyphenylene oxide [6] and poly- 
ethylenes [7]. In other, more brittle materials 

such as polystyrene and polymethylmethacrylate 

(PMMA) shear lips are not observed. The normal 
equation used to estimate the width of a shear lip 

on a fracture surface, d, is that suggested by Irwin 
et al. [8, 9] for metallic materials 

0022-2461 /81 /082329-04502 .40 /0  

d = 27r \ trr/ (1) 

where try is the tensile yield stress and KIc is the 
plane strain fracture toughness. This equation 
cannot describe or explain the situation where 
shear lips are not observed. Also there is no direct 
evidence that it is correct, even in form, in the 
situations where the shear lips are visible in 
polymers. The aim of this note is to follow up an 
earlier suggestion that shear lips form in crazing 
materials only when the stress across a craze is 
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greater than the tensile yield stress of the material 
[5]. Kambour etal. [2] have expressed similar 
ideas when suggesting that shear lip width is 
controlled by the balance between the octahedral 
shear stress and the normal stress. 

The Dugdale plastic zone [10] has been shown 
to be an accurate fit to the shape of the crack tip 
crazes in some polymer systems [11-13] and so it 
seems reasonable to describe the stresses around a 
crack tip craze by this model. 

In deriving Equation 1 Irwin assumed that the 
width of shear lips on the specimen surface (rp) 
was given by the distance from an elastic crack at 
which the stress reached the tensile yield stress. 
It was then assumed that the boundary between 
shear lip and undeformed material would intersect 
the fracture surface and specimen surface at 45 ~ 
equating rp and d. This latter assumption has been 
shown to be fairly accurate for two polymeric 
materials [2, 5] and Equation 1 has been shown to 
agree with experiment with a factor of two in 
some metals [14, 15]. 

It seems reasonable therefore to calculate the 
size of the shear lips in a material whose plane 
strain failure mode is crazing in a similar way but 
using the elastic stress field round a Dugdale craze 
zone rather than that round a sharp crack tip. 
It is assumed that rp and hence d are given by the 
maximum distance from the crack plane at which 
the elastic stresses fulfill a plane stress yielding 
criterion. This is a little different from the tech- 
nique used by Irwin as he calculated the distance 
in front of the crack tip (along the crack axis) at 
which the stress equalled the yield stress. In his 
case though the zone around the crack tip in 
which the stress was equal or greater than the yield 
stress was approximately circular so either tech- 
nique would have given similar results. These 
elastic stresses were derived by Rice [16] and, 
using his notation, are given by 

Oil  -t- O22 = 4 Re [4~'(z)]; (2) 

022--io12 = 2 Re [~b'(z)] + (z -- g)~b"(z); 
(3) 

where Re is the real part of the function and 

0'(z) oo tan_ 1 , (4) 
lr I\R--z/ l 

where the crack is on the haft plane x2 = 0, Xl ~< 0 
and the craze is at xz = 0, 0 < x l ~ R  so the craze 
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length is R. The stress across the craze is Oo and 
Z : X  1 "t- /X 2 . 

From Equation 4 

o o i { R ]  1/2 
= ( 5 )  

1"( L Z  \IK ~ Z  ] 

The von Mises yield criterion for the plane 
stress situation at the surface of the specimen is 
given by 

O e ~ Gy, 

where 

202 = (011 - -  022) 2 "~ 021 -[- 022 -1- 60]= (6) 

and Cry is the tensile yield stress of the material. 
Substituting Equations 2 and 3 into Equation 6 

2 It It @ = 4(Re[4;(z)l)2+ 12x=q~ (z)~ (z). (7) 

Values of (oe/Uo) were calculated for the region 
around a Dugdale zone and the results are shown 
in Fig. 1. The maximum value of %/0o for any 
given distance from the crack plane, x=[R, occurs 
approximately at xl/R =0.6.  We are assuming 
that ry is given by the largest distance from the 
crack plane that the yield criterion is satisfied, so 
ry equals the value of x= at Xl[R ~ 0.6 for which 
% = Oy. This value of xz = ry is given in non- 
dimensional form as x2[R in Fig. 2 as a function of 
ay/ao. We are equating the shear lip size (d) with 
ry so Figs 1 and 2 show that the size of the shear 
lips is zero for the yield stress greater than the 
craze stress and increases steadily for decreasing 
yield stress less than the craze stress. Shear lips 
attain a size equal to the craze length, R, when 
ay = 0.66ao. It can be shown from the results in 
Fig. 2 that for values of ay < 0.660o, ry and d 
become independent of ao and are given approxi- 
mately by 0.2(Ki/oy ) which is not significantly 
different from Equation 1. 

Knott [17] has suggested that when allowance 
is made for the stress redistribution round a plastic 
zone, the plane stress plastic zone radius, ry, should 
be given in non-crazing materials approximately by 
0.4(Ki/oy) 2 rather than Equation 1. There is some 
experimental evidence which supports this point 
of view [14]. If this is the case then one would 
expect the same effect to occur in crazing materials 
and so the shear lip sizes predicted in Figs 1 and 2 
should be doubled. 

The fracture energy of shear lips is considerably 
greater than that of the plane strain region in the 
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Figure 1 Contours of  (ae/Oo) around a crack 
tip craze. 

centre of the specimen so even relatively small 
shear lips can cause the stress intensity required 
for crack propagation to be considerably greater 
than plane strain value. In this case the value of 
K x used in Equation 1 has been the applied K I 
[14, 15]. It is likely that in the same situation in 
polymers the applied K I also should be used. 

There is very little data with which the model 
described in this work can be compared. The basic 
assumption, that shear lips are only observed when 
the craze stress is greater than the yield stress, is 
followed in a number of systems. Shear lips are 
not observed in PMMA and polystyrene and in 
both systems crazes are clearly visible in tensile 
tests before yield occurs. In polycarbonate, how- 
ever, crazes are not observed before yield in a ten- 
sile test, in polyethylene it is hard to know if they 

0 . 5 -  

I I I 
o f ~ R  2 s 

Figure 2 N o n - d i m e n s i o n a l  p l a s t i c  z o n e  size x2/R as a 
f u n c t i o n  o f  (Oy/Oo).  

occur as the material is not clear. Shear lips are 
seen in both these materials. Shear lips do not 
occur, or are very small in polymers during high 
speed, unstable crack growth [2, 5] and so can 
only be expected to be significant in those systems 
in which the crack growth is stable. It is perhaps 
for this reason that they have not been reported in 
PVC in spite of the fact that some grades can yield 
in a tensile test without crazing. 

Shear lips have been reported in vinyl-urethane 
resins but in the systems described ao ~ 1.5Oy so it 
is not possible to make a numerical comparison 
between this theory and Equation 1. 

Pitman and Ward [4] examined the fracture of 
polycarbonate as a function of molecular weight at 
- 3 0  ~ C. They found that shear lip size, craze 
length and craze stress (calculated using the 
Dugdale model) all decreased in size as the 
molecular weight was decreased by irradiation. 
The yield stress remained constant. The shear lip 
size decreased more rapidly than the craze length, 
however, the former changed by a factor of 10 
whilst the latter changed by about a factor of 3. 
Qualitatively this agrees with the predictions of 
Fig. 2. The craze stress calculated by Pitman and 
Ward varies from greater than the yield stress at 
high molecular weights to less than the yield stress 
at low molecular weights; therefore, according to 
the model described here, shear lips should not have 
existed for the low molecular weight materials. 
The reason for this disagreement might be that 
the Dugdale model did not fit the craze shapes 
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very well [5] so the craze stress probably varied 
considerably along the craze. Dugdale zone 
analysis gives some sort of average craze stress 

while the shear lip size may be given by the maxi- 
mum craze stress if the latter occurs close to the 
craze tip. Parvin and Williams [1] used Equation 1 
to estimate their shear lip sizes in polycarbonate 

but comment that "There is evidence of shear 
lips forming above - - 6 0 ~  and these reduce in 
size as the temperature falls. At all temperatures 

they are substantially smaller ( < 0 . 1 r a m )  than 
the calculated ry2 (~  1 ram)". 

The stress across a crack tip craze, Oo, need not 
be the same as the stress necessary to cause crazing 

in uniaxial tension. This is partly because the 

shapes of crazes without cracks and crack tip 

crazes are significantly different but  there is also 

the difference in stress environment. The crack 
tip craze is in a plane strain situation where a l l  

and 022, the stress along and normal to the craze, 

equal go, and 033 equals 2vau ,  where v is Poisson's 
ratio. The effect of stress environment on crazing 

has been described by Sternstein and Ongchin 

[18] and also Oxborough and Bowden [19]. The 

forms of their crazing criteria are very similar and 

both fit the same biaxial data. The equation of 

Oxborough and Bowden can be evaluated in the 
triaxial situation for both the parameters which fit 
their polystyrene data and those from the PMMA 
data of Sternstein and Ongchin. One finds that the 

ratio of fro to the uniaxial crazing stress, oe, equals 

1.57 for polystyrene at room temperature and 

1.08 for PMMA at 50 ~ C. This result should be 

considered as evidence that eo does not  necessarily 

equal the uniaxial crazing stress %. 
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